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A generating function for the second moment of the distinct 
number of sites visited by an n-step lattice random walk 

Heman Larraldet and George H Weisst 
t Cavendish Laboratory. University Of Cambridge, Cambridge CB3 OH& UK 
$ Physical Sciences Laboralory, Division of Computer Research and Technology. National 
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Abstract. We derive a generating function for the second moment of the distinct number 
of sites visiled by an n-step lattice random walk. The formalism allows us to find asymptotic 
forms for the second moment as previously given in the mathematical literature using much more 
complicated techniques. The general technique can, in principle, be utilized in a derivation of 
higher moments. 

1. Introduction 

The number of distinct sites visited by a n-step random walk on a lattice has been the subject 
of investigation, both rigorous and heuristic, since being suggested as being of theoretical 
interest by Dvoretzky and Erdos [l]. Since that time this random variable, to be denoted by 
R,, has come to play an increasingly important role in a number of applications in physics 
and chemistry. In particular it plays a significant role in the trapping problem, in which 
one seeks to find the survival probability of a single random walker on a lattice with a 
concentration of randomly placed trapping sites [Z]. In the simplest version of this problem 
each site of a translationally-invariant lattice is designated as a trap with probability c. Let 
S, be the probability that an initially randomly placed random walker survives for n or 
more steps in such a field of baps. Then S,, is related to R. and c by 

S" = ((1 - c y " )  (1) 
in which the brackets indicate an average over all random n-step random walks and all 
possible placements of traps. Equation (1) states that in order for the random walk to 
survive for n steps each lattice point visited by the random walk must not have been a trap. 

Because R. is a non-Markovian random variable even for simple random walks the 
analysis required to determine its properties presents considerable difficulties. One property 
of this random variable whose asymptotic form is relatively~straightforward to calculate is 
the first moment, (Rn) ,  since a generating function for this quantity 

m 

Ri(z) = ~ ( R ) Z "  (2) 
"=O 

is easily found [3,4] and Tauberian methods can be applied to the resulting function to 
derive asymptotics. However, a determination of the higher moments of R,, generally poses 
much more challenging problems. Jain and Pruitt have calculated asymptotic forms of the 
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second moment in different dimensions using a somewhat complicated analysis [5,6] and 
Torney later studied properties of this same variable in two dimensions using a combination 
of analytical and numerical methods PJ. As shown by Zumofen and Blumen, moments 
of R,, can be used to generate successively more accurate approximations to the survival 
probability in the trapping problem, S,, that are useful at times at which S, takes on values 
meaningful in physical applications [8,,9]. This is in con'uast to mathematically rigorous 
asymptotic results [lo], which are generally found to be usable when S, is of the order of 

In this paper we derive a generating function for (Ri).  The general technique used here 
can be systematized and extended to the calculation of higher moments as well. However, 
the resulting calculation becomes algebraically, but not conceptually, more complicated 
than the one for the second moment. As will be seen, the derivation is based on 
probability distributions for random walks conditioned to avoid a single site, while the 
analogous derivation of generating functions for higher moments requires the use of similar 
distributions for random walks conditioned on the avoidance of several sites. The theory of 
random walks that are so conditioned has been developed in [13,14]. 
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or less depending on the formulation of the trapping model [ l l ,  121. 

2. General formalism 

Let Z,(T) denote an indicator variable associated with site T at step n, which is to say that 

0 
1 

if T has not been reached by step n 
if T has been reached by step n. (3) I I a ( T )  = 

The random variable R,, can be represented in terms of the l.(r) as 

so that the quantity of interest in the present exposition is 

According to the definition in equatioh (3) the quantity Zn(r)Zn(~') = 1 if both T and T' 

have been visited by step n and = 0 otherwise. Thus G"(T, T') (Zn(v)In(v')) is the 
probability that the random walk has reached both T and T' by step n. Our object will be to 
calculate a generating function for (R:). This function, defined analogously to equation (Z), 
will be denoted by R ~ ( z )  and, according to the relation in equation (5),  can be represented 
in terms of the generating function of the G"(T, T') as 

where &(T, T'; z) is the generating function of the Gn(v, T' )  with respect to n. In the 
analysis to follow only the case of a symmetric random walk on a translationally-invariant 
lattice will be considered, although it is not difficult to generalize the analysis to allow for 
asymmetric transition probabilities for random walks on such lattices. 

We start by recalling some of the common probabilities and their associated transforms 
to be used in the subsequent analysis. Let p G )  denote the probability of a displacement 
equal to j in a single step, let ~ " ( ~ 1 0 )  be the probability that the random walker is at T at 
step n given that it was initially at j = 0, and let fn(rl0) be the probability that it is at T 

for the first time at step n with the same initial position. A crucial role in the analysis will 
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be played by the generating functions for these probabilities with respect to n. These will 
be denoted by j ( r ;  z10) and f ( r ;  z10) respectively, which are defined by 

m m 

n=O n=o 
j ( r ;  ZIO) = p.(r~o)z" f ( ~ ;  ZIO) = ~ , ( ~ I o ) z " .  (7) 

These are related by 

[3,41. Define the characteristic function $(e) by j (e )  = xjppO')exp(ij. e). The 
generating function j ( ~ ;  z10) can then be represented in integral form as 

where D is the number of dimensions. 
The calculation of Gn(r ,  T')  is based on a decomposition which expresses the fact that 

if both T and r' have been occupied by step n and r # T' then either r was reached first 
and then T' was reached or else the points were reached in the opposite order. Consider the 
first of these possibilities, and let &(TIT') be the probability that the random walk reaches 
T for the first time at step m starting from 0 before having reached T' by that time. The 
function G"(T, r') can be written in terms of these probabilities as 

Lo k f m ( T I 0 )  r = r'. 

n m  

Z[g j (+ IT j fm- j ( r ITO + gj(TIrOfm-j(T'IT)I r # T' 

(10) 
m=O j=O 

Gn(r ,  T')  = 

To simplify notation we define the function 

J,,,(T, T') = 

so that 

which can be inserted into the relation in equation (5 )  to yield an expression for (R:). 
Further simplification is possibly by introducing generating functions with respect to n. 

In order to find such generating functions we must derive the generating function for the 
gn(r'lr) .  This may be found either by making use of the formalism developed in 1131 or 
[14], or by a direct approach, which is the one to be used here. We may immediately write 

(131 
" 

gn(rfIT) = frr(r'10) - x g j ( r I r ' ) f n - j ( + )  
j=O 

with a similar equation holding when T and T' are interchanged. The relation in equation (13) 
follows by noting that the first-passage time probability for reaching r' at step n conditional 
on not having passed through T is found by subtracting from the unrestricted first-passage 
time probability the contributions from all of those random walks which reach T before 
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reaching r‘. Equation (13) and its conjugate are simplified when expressed in terms of 
generating functions with respect to n. Let i ( ~ ’ ;  Z I T )  denote the generating function that 
corresponds to gn(r’IT). The various generating functions satisfy a set of linear simultaneous 
equations which are 

H Larrakie and G H Weiss 

a+; ZIT) = AT’; 210) - i ( T ;  zlT’)J(T’; ZIT) 

a?-; ZIT‘) = PS; ZIO) - iw; zlT)f(T;  ZIT’) 
(14) 

which are readily solved, yielding 

and $(T; Z I T )  = f ( ~ ;  z10). 
It is evident from equations (5) and (12) that the key quantity in the calculation of 

the generating function of the (R:) is the set of functions [G”(T, T’)]. As mentioned, our 
analysis will be reshicted to the most interesting case of the isotropic random walk, since, 
with this restriction, the first-passage time probabilities for the unrestricted random walk 
will be symmetric in their arguments, i.e. fn(rlr’) = .f,,(~’l~). The generating function 
corresponding to equation (11) leads to the result 

and 

e@, T ;  z )  = f ( r ;  z10). 
If we define the function 

and an associated generating function C(z) then the combination of equations (16) and (17), 
together with the assumed isotropy of the random walk, implies the result 

We next observe that for the isotropic random walk the function fn(rlr’) depends on its 
arguments only through the difference p = T - 7’. Hence equation (19) is equivalent to 

This can be simplified slightly by observing that the generating function for the expected, 
number of sites visited by an n-step random walk defined in equation (2) can be expressed 
in terms of the f ( ~ ;  Z I O )  as 

Z fw; ZIO) = RI (z)  = 
r (1 -z )Z$(O;z) ‘  

Thus, according to equations (6) and (20) we have 
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This is the central relation in our analysis, which will be the basis of our calculation of the 
asymptotic form of (R i ) .  

3. One dimension 

The crucial quantity in the calculation of (RZ) is the sum in square brackets in equation (22), 
which we denote by I@). In order to find the leading term in the asymptotic expansion 
of the second moment of R, we apply a Tauberim theorem to the generating function in 
equation (22). For this purpose it suffices to replace the sum in the definition of 

by an integral, at the same time replacing the factor z by a variable e-E % 1 -E, where the 
limit z + 1 is obviously equivalent to the limit E + 0. This replacement is equivalent to 
considering the generating function as a Laplace transform. The small-s form of B(p; z )  is 
known to be 

j ( p ;  z) - 1 exp (-e) 
a& 

which allows us to write as an approximation 

(24) 

This relation implies the asymptotic behaviour 

( R i )  % 4u2n In(2) (26) 
which, when combined with the asymptotic expression for (R,) 141. implies that the 
asymptotic form of the variance associated with R,, is 

This can be found otherwise, since in one dimension the variable R, is just the span of the 
random walk [16,17]. 

4. Two dimensions 

The same basic technique can be used to find the lowest order term in the large-n 
approximation to (R:). The crux of the calculation is that of finding the analytic behaviour 
of I ( z )  which is defined in terms of p(p; z )  analogous to the one-dimensional result given in 
equation (23). As in one dimension singular behaviour of p(p; e)  arises from the singularity 
of the integrand of equation (9) at 0 = 0. 

We consider only the completely isotropic random walk for which, in the neighbourhood 
of the origin, the generating function $(e) can be approximated by 

(28) j ( e )  = 1 - f~’[e:  +e;] = I - $ 2 e 2 .  
The singular behaviour of B(0; z )  is therefore found to be 
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where, as before, E = 1 - z and, as shown in [4], 
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Thus, the function I (z) is approximately given by 

@ . (31) 

Since l i i + m  K&) = 0 we can drop the Bessel function term in the denominator of the 
integral in comparison with the logarithmic term and evaluate the resulting integral exactly 
to find, as a final result, the approximation 

On combining this relation with equations (22) and (29) we find 
0-2-4 

The use of a Tauberian theorem then allows us to infer that the first term in the asymptotic 
expression for (R,2) is 

It can be shown by similar techniques that the correction term to this result is O[l/ln(n)], 
and it is further known that u2(R,J c< nZ/ln4(n) [6]. 

5. Three dimensions 

In the case of three dimensions, since @(p; 1) is finite we expect the generating function 
I (z)  to diverge at z = 1. The form of this divergence can be determined by noting the 
inequality 

IB(T z)l < IB(0; z)l 7 # 0 (35) 
that follows directly from the integral representation of B ( T ;  z ) .  This observation allows us 
to expand the sum for Z(z) as 

where the prime indicates that the term p = 0 is to be omitted. The factor of h on the right- 
hand side of the equation does not contribute to the singular behaviour of I (z) .  Therefore, 
only the first three terms in brackets need be considered in the remainder of our calculation 
as it can be shown that the quartic term in the expansion is not singular. The first sum can 
be evaluated exactly since E, pn(r) = 1, thereby yielding a contribution equal to 

The remaining sums can only be evaluated approximately by replacing the sums by 
integrals, which suffices to find at least the leading term in the expansion of I ( z )  in the 
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neighbourhood of z = I. For this purpose we need to find an approximation to $(p; z )  in 
that neighbourhood. To do so we write 

B(P; Z) = $(pi 1) + [$(P; Z) - $(pi I)] s $(p;  1) - A$@; Z) 

The second term on the right-hand side is a singular function of E = 1 - z in the h i t  
E + 0. The form of the singularity will be determined for isotropic unbiased random walk 
whose steps have finite second moments. In this case the function $(e) has an expansion 
around the origin whose first two terms are 

$(e) w I - f U * [ e :  +e; +e;] = ~ i  --;U2e2. (39) 
Since the singular behaviour is due to the behaviour of the denominator of the integrand in 
equation (38) in the neighbourhood of the origin we can substitute equation (39) into that 
equation, at the same time extending the limits of integration to (--00, -00). The resulting 
integrals can be evaluated in closed form, leading to the result 

A a ( p ; z ) m - [ l - e x p ( - f & ) ] = - F  1 1 
2nuZp U nu3 2 

in which p = (p . p)'12. Hence we can write 

As will be seen, the behaviour of the function $(p;  z) required for calculating the singularity 
of I ( z )  is the behaviour of $(p; z )  at large values of the distance p.  In this limit we have 
the approximation 

which implies the approximation 

which will be used in our subsequent development. 
The formula in equation (43) is the form which will be used in evaluating the remaining 

sums in equation (36). To do so we approximate the sum by a triple integral ranging over 
the entire space: 

c ' [ b ( p ;  z ) ] ~  = - Sm Sm Sm $exp [-?&I d3p. (44) 
-m -m --m P 

If E is set equal to 0 the resulting integral on the right-hand side diverges. A transformation 
of the triple integral to spherical coordinates allows a simplification in that the integrals 
over the angles can be evaluated exactly, leaving us with the single integral 

A calculation of the sum over the third power of $(p; z )  is similar but there is a slight 
additional complication. We have 

c'[$(f; z)I3 - Sm -m Jm -m - m P  A e x p  [-:&I d3p. (46) 
P 
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At this point an exact transformation to spherical coordinates would again allow an exact 
evaluation of the angular integrals but the final integral with respect to p diverges at both 
p = 0 and p = CO in the l i t  E = 0 because of the p3  term in the denominator of 
equation (46). The singularity at p = 0 is apparent rather than real, since the term p = 0 
does not appear in the original sum. Consequently we can eliminate the effect of the 
singularity at the origin by setting the lower limit of integration to a value other than 0, 
noting that the remaining integral still diverges when E is set equal to 0 since the integrand 
behaves as i / p  as p + 00. Since there is no contribution to singular behaviour attributable 
to the behaviour of the integrand in the small-p regime we may set the lower limit of the 
integral with respect to p to be p = 1 which yields the approximation 

H Lorralde and G H Weiss 

The last step in our derivation of the singular behaviour of l ( z )  is that of finding a 
correction term to $(O; z )  in the neighbourhood of z = 1. Since the calculation is similar 
to that required in the more general case we present only the final result, which is 

On combining equations (37) and (43)-(48) according to equation (36) we find 

1 + I I In (L) . (49) 

Hence, if we make use of equation (22) we find that the most singular terms in the expansion 
of R d z )  are 

’(‘) ( I  - Z ) i x o ;  1) zo3[p(o; 1)12- + 4 n w j ( o  1)13 1 - 

This translates, in the time domain, to the following lowest-order terms in an asymptotic 
expansion of (R,2): 

On the other hand, the asymptotic expansion of (R,)  is, to second order, 

This implies that the lowest order t em in the asymptotic variance is 

which agrees with the earlier result in [6]. It is also known from that reference that the 
asymptotic distribution of R,, is Gaussian so that the combination of equations (52) and 
(53) suffices to specify the asymptotic probability density of R., although no information is 
available ahout the order of magnitude of n required to make this a useful approximation. 
In four or more dimensions u2(n) 0: n to lowest order. 
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6. Discussion 

The significance of our analysis is not in being able to rederive results already in the 
mathematical literature. Rather it is in the fact that we have been able to use techniques 
based on generating functions, which are otherwise widely utilized by physicists to solve 
problems in the theory of Markovian random walks [15]. Clearly, it is possible in principle 
to extend the present analysis to derive large-n approximations to higher moments, albeit 
at the expense of very much more tedious algebra and analysis. We are presently engaged 
in generalizing our analysis to the study of (R;) for onedimensional random walks with 
jump probabilities asymptotic to stable-law probabilities. 
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